Sapling Toolkit
Sapling is a protocol allowing private transactions in a decentralized environment. Sapling was introduced in Tezos in the Edo protocol. Refer to the Tezos documentation for more information on Sapling: https://tezos.gitlab.io/active/sapling.html
Keys
Spending key
The spending key is used to spend tokens. It must be handled securely to prevent funds from being lost or stolen.
Taquito offers support for encrypted/unencrypted spending keys and mnemonics. Refer to the following link for more information: InMemorySpendingKey
Proving key
The proving key can be used to generate proof without allowing tokens to be spent. Zero-knowledge proofs can be created with either the spending or the proving key. In cases where the device holding the spending key is computationally or memory-limited, such as a hardware wallet, proofs can be produced on a separate device using the proving key.
Viewing key
The viewing key is derived from the spending key. This key can be used to view all incoming and outgoing transactions. It must be handled securely to prevent a loss of privacy, as anyone accessing it can see the transaction history and the balance.
Refer to the following link for more information: InMemoryViewingKey
Sapling address
Sapling addresses are used to receive tokens. They are derived from the viewing key.
Here is an example on how to retrieve addresses: InMemoryViewingKey
Sapling toolkit
The @mavrykdynamics/taquito-sapling
package provides a SaplingToolkit
class that surfaces all of the Sapling capabilities, allowing it to read from a Sapling state and prepare transactions.
The constructor of the SaplingToolkit
takes the following properties:
- the first parameter is an object containing:
- a
saplingSigner
property, an instance ofInMemorySpendingKey
as the spending key is needed to prepare and sign transactions that spend tokens. - an optional
saplingProver
property which can be an instance ofInMemoryProvingKey
if you want to generate the proofs from a proving key rather than the spending key.
- a
- the second parameter is an object containing:
- the address of the Sapling contract (string)
- the size of the memo of the corresponding Sapling contract (number)
- an optional Sapling id that must be specified if the contract contains more than one Sapling state.
- an instance of a class implementing the
TzReadProvider
interface, which allows getting data from the blockchain - it is possible to specify a different packer than the
MichelCodecPacker
, which is used by default
Here is an example of how to instantiate a SaplingToolkit
:
import { TezosToolkit, RpcReadAdapter } from '@mavrykdynamics/taquito';import { SaplingToolkit } from '@mavrykdynamics/taquito-sapling';import { RpcClient } from '@mavrykdynamics/taquito-rpc';const tezos = new TezosToolkit('https://rpc.mavryk,network/basenet/');const readProvider = new RpcReadAdapter(new RpcClient('https://YOUR_PREFERRED_RPC_URL'));const saplingContract = await tezos.contract.at('KT1ToBD7bovonshNrxs3i4KMFuZ8PE2LUmQf');const inMemorySpendingKey = await InMemorySpendingKey.fromMnemonic('YOUR_MNEMONIC');const saplingToolkit = new SaplingToolkit({ saplingSigner: inMemorySpendingKey },{ contractAddress: saplingContract.address, memoSize: 8 },readProvider)
How to retrieve my balance in the Sapling shielded pool?
When calling the getSaplingTransactionViewer
method of the SaplingToolkit
class, an instance of the SaplingTransactionViewer
class is returned. The SaplingTransactionViewer
class allows retrieving and decrypting Sapling transactions for the specified viewing key and calculating the unspent balance.
For each entry in the shielded pool, the SaplingTransactionViewer
class will try to decrypt them using the viewing key as if it were the receiver. If a ciphertext is successfully decrypted, the configured account was the receiver of the output. The SaplingTransactionViewer
will find which inputs were not spent by computing their nullifier. If an input is spent, its nullifier will be in the Sapling state. If the nullifier is not present, the input has not been spent, and its value will be considered in the calculated balance.
Note that the balance is represented in mumav.
The balance can be retrieved as follows:
How to retrieve my transaction history?
The SaplingTransactionViewer
class exposes a method called getIncomingAndOutgoingTransactions
which allows decrypting the transactions received and sent based on the viewing key. Information like the value in mumav, the memo or the payment address can be retrieved as well as if the input is spent for the incoming ones.
Example:
How to prepare a shielded transaction?
A shielded transaction allows sending tokens from a Tezos account (mv1, mv2, mv3) to a Sapling address (zet). The prepareShieldedTransaction
method of the SaplingToolkit
takes an array of ParametersSaplingTransaction
, making it possible to send tez to multiple addresses at once if needed.
The ParametersSaplingTransaction
is an object made of:
- a
to
property, which is the destination address (zet) - an
amount
property, which is the amount to shield in tez by default - an optional
memo
that cannot be longer than the specified memo size - an optional
mumav
property that must be set to true if the specified amount is in mumav rather than tez
The prepareShieldedTransaction
method returns the crafted Sapling transaction parameter but does not perform any change on the shielded pool. A subsequent step where the Sapling transaction parameter is submitted to the smart contract must be done. Note that in a case of a shielded transaction, the shielded amount must be sent along when calling the smart contract to transfer the tez to the shielded pool, or it will result in an error.
Here is an example of how to prepare and inject a shielded transaction using Taquito:
How to prepare a Sapling transaction?
A Sapling transaction allows sending tokens from an address (zet) to an address (zet). The prepareSaplingTransaction
method of the SaplingToolkit
takes an array of ParametersSaplingTransaction
, making it possible to send tez to multiple addresses at once if needed.
The ParametersSaplingTransaction
is an object made of:
- a
to
property, which is the destination address (zet) - an
amount
property, which is the amount to shield in tez by default - an optional
memo
that cannot be longer than the specified memo size - an optional
mumav
property that must be set to true if the specified amount is in mumav rather than tez
The prepareSaplingTransaction
method returns the crafted Sapling transaction parameter but does not perform any change on the shielded pool. A subsequent step where the Sapling transaction parameter is submitted to the smart contract must be done.
A user should not use their own implicit account (mv1, mv2, mv3) to submit a Sapling transaction but rather have a third party inject it.
Here is an example of how to prepare and inject a Sapling transaction using Taquito:
How to prepare an unshielded transaction?
An unshielded transaction allows sending tokens from an address (zet) to a Tezos address (mv1, mv2, mv3). The prepareUnshieldedTransaction
method of the SaplingToolkit
takes a single ParametersUnshieldedTransaction
.
The ParametersUnshieldedTransaction
is an object made of:
- a
to
property, which is the destination account (mv1, mv2, mv3) - an
amount
property, which is the amount to shield in tez by default - an optional
mumav
property that must be set to true if the specified amount is in mumav rather than tez
The prepareUnshieldedTransaction
method returns the crafted Sapling transaction parameter but does not perform any change on the shielded pool. A subsequent step where the Sapling transaction parameter is submitted to the smart contract must be done to retrieve the tokens from the pool.
Here is an example of how to prepare and inject an unshielded transaction using Taquito:
SaplingTransactionViewer
We don't require the spending key to retrieve the balance and transaction history. It can be done using the viewing key and the SaplingTransactionViewer class.
The constructor of the SaplingTransactionViewer
takes the following properties:
- an instance of
InMemoryViewingKey
- the second parameter is an object containing:
- the address of the Sapling contract or a Sapling id if the contract contains more than one Sapling state.
- an instance of a class implementing the
TzReadProvider
interface, which allows getting data from the blockchain
Here is an example of how to instantiate a SaplingTransactionViewer
:
import { TezosToolkit, RpcReadAdapter } from '@mavrykdynamics/taquito';import { InMemoryViewingKey } from '@mavrykdynamics/taquito-sapling';import { RpcClient } from '@mavrykdynamics/taquito-rpc';const readProvider = new RpcReadAdapter(new RpcClient('https://YOUR_PREFERRED_RPC_URL'));const tezos = new TezosToolkit('https://rpc.mavryk,network/basenet/');const saplingContract = await tezos.contract.at('KT1ToBD7bovonshNrxs3i4KMFuZ8PE2LUmQf');const inMemoryViewingKey = new InMemoryViewingKey('000000000000000000977d725fc96387e8ec1e603e7ae60c6e63529fb84e36e126770e9db9899d7f2344259fd700dc80120d3c9ca65d698f6064043b048b079caa4f198aed96271740b1d6fd523d71b15cd0b3d75644afbe9abfedb6883e299165665ab692c14ca5c835c61a0e53de553a751c78fbc42d5e7eca807fd441206651c84bf88de803efba837583145a5f338b1a7af8a5f9bec4783054f9d063d365f2352f72cbced95e0a');const saplingTransactionViewer = new SaplingTransactionViewer(inMemoryViewingKey,{ contractAddress: saplingContract.address },readProvider)
Refer to these sections to retrieve the balance and view the transaction history.